Фотоэлектрические солнечные панели представляют собой тонкие кремниевые пластины, которые преобразуют солнечный свет в электричество. Производство солнечных батарей сегодня как никогда актуально, т.к. они выступают в качестве источников энергии в широком спектре областей, в том числе в телекоммуникационной, космической отраслях, медицине, связи, микроэлектронике и т.п. Солнечные батареи в виде больших массивов используются в различных спутниках и солнечных электростанциях.
История создания солнечных батарей началась еще в 19 веке, а технология их производства развивалась удивительно быстро. Причиной служили постоянно проводимые исследования в области преобразования солнечной энергии в электрическую. Еще в 1839 году Антуан-Сезар Беккерель представил созданную им химическую батарею, которая под воздействием солнца вырабатывала электричество. Первая солнечная батарея имела КПД всего 1%. То есть только один процент солнечного света был преобразован в электричество. В 1873 году Уиллоуби Смит обнаружил чувствительность селена к свету, а в 1877 году Адамс и Дэй отметили, что селен под воздействием света производит электрический ток. Чарльз Фриттс в 1880 году использовал покрытый золотом селен для производства первого солнечного элемента, который также имел эффективность 1%. Тем не менее, Фриттс считал свои солнечные элементы революционными. Он рассматривал возможность использования бесплатной солнечной энергии как средство диверсификации поставок энергии, предсказывая, что производимые солнечные батареи вскоре заменят существующие электростанции.
С объяснением в 1905 году Альбертом Эйнштейном фотоэффекта появились надежды на создание солнечных батарей с более высоким КПД, но прогресс оказался незначительным. В середине 20 века исследования в области диодов и транзисторов дали необходимые для ученых знания. В 1954 году Гордон Пирсон, Дэррил Чапин и Кэл Фуллер произвели кремниевый солнечный элемент, имеющий КПД 4%. В дальнейшем эффективность ячейки была повышена до 15%. Солнечные батареи были впервые использованы в сельских районах и отдаленных городах в качестве источника питания для системы телефонной связи, где они успешно использовались на протяжении многих лет.
В настоящее время производимые солнечные батареи пока не могут полностью удовлетворить потребности в энергии, но они стали основным источником энергии для обеспечения искусственных спутников Земли. Существующие на то время топливные системы и аккумуляторные батареи имели слишком большой вес. Солнечные батареи имеют большее значение соотношения вырабатываемой энергии к весу, чем все другие традиционные источники энергии, и являются экономически более эффективными.
Пока количество установленных крупномасштабных энергетических фотоэлектрических систем невелико. Большинство усилий направлено на обеспечение с их помощью электроэнергией отдаленных и труднодоступных мест. Мощность ежегодно устанавливаемых солнечных электростанций составляет около 50 мегаватт. Но солнечные батареи обеспечивают лишь около 1 процента всей производимой в настоящее время электроэнергии. Сторонники солнечной энергетики утверждают, что количество солнечного излучения, достигающего поверхности Земли каждый год, могло бы легко обеспечить потребности в энергии несколько раз. Но история создания солнечных батарей должна пройти длинный путь, прежде чем осуществить мечту Чарльза Фриттса по получению бесплатной и доступной солнечной энергии.
Так исторически сложилось, что солнечные батареи – это уже вторая попытка человечества обуздать безграничную энергию Солнца и заставить ее работать себе на благо. Первыми появились солнечные коллекторы (солнечные термальные электростанции), в которых электричество вырабатывает нагретая до температуры кипения под сконцентрированными солнечными лучами вода.
Солнечные же батареи производят непосредственно электричество, что намного эффективнее. При прямой трансформации теряется значительно меньше энергии, чем при многоступенчатой, как у коллекторов (концентрация солнечных лучей, нагрев воды и выделение пара, вращение паровой турбины и только в конце выработка электричества генератором).
Современные солнечные батареи состоят из цепи фотоэлементов – полупроводниковых устройств, преобразующих солнечную энергию напрямую в электрический ток. Процесс преобразования энергии солнца в электрической ток называется фотоэлектрическим эффектом.
Данное явление открыл французский физик Александр Эдмон Беккерель в середине XIX века. Первый же действующий фотоэлемент спустя полвека создал русский ученый Александр Столетов. А уже в двадцатом столетии фотоэлектрический эффект количественно описал не требующий представления Альберт Эйнштейн.
Полупроводник – это такой материал, в атомах которого либо есть лишние электроны (n-тип), либо наоборот, их не хватает (p-тип). Соответственно, полупроводниковый фотоэлемент состоит из двух слоев с разной проводимостью. В качестве катода используется n-слой, а в качестве анода – p-слой.
Лишние электроны из n-слоя могут покидать свои атомы, тогда как p-слой эти электроны захватывает. Именно лучи света «выбивают» электроны из атомов n-слоя, после чего они летят в p-слой занимать пустующие места. Таким способом электроны бегут по кругу, выходя из p-слоя, проходя через нагрузку (в данном случае аккумулятор) и возвращаясь в n-слой.
Первым в истории фотоэлектрическим материалом был селен. Именно с его помощью производили фотоэлементы в конце XIX и начале XX веков. Но учитывая крайне малый КПД (менее 1 процента), селену сразу же начали искать замену.
Массовое же производство солнечных батарей стало возможным после того как телекоммуникационная компания Bell Telephone разработала фотоэлемент на основе кремния. Он до сих пор остается самым распространенным материалом в производстве солнечных батарей. Правда, очистка кремния – процесс крайне затратный, а потому мало-помалу пробуются альтернативы: соединения меди, индия, галлия и кадмия.
Понятное дело, что мощности отдельных фотоэлементов недостаточно, чтобы питать мощные электроприборы. Поэтому их объединяют в электрическую цепь, тем самым формируя солнечную батарею (другое название – солнечная панель).
На каркас солнечной батареи фотоэлементы крепятся таким образом, чтобы их в случае выхода из строя можно было заменять по одному. Для защиты от воздействия внешних факторов всю конструкцию покрывают прочным пластиком или закаленным стеклом.
Классифицируются солнечные батареи по мощности вырабатываемого электричества, которая зависит от площади панели и ее конструкции. Мощность потока солнечных лучей на экваторе достигает 1 кВт, тогда как в наших краях в облачную погоду она может опускаться ниже 100 Вт. В качестве примера возьмем средний показатель (500 Вт) и в дальнейших расчетах будем отталкиваться от него.
Самым низким коэффициентом фотоэлектрического преобразования обладают аморфные, фотохимические и органические фотоэлементы. У первых двух типов он равен примерно 10 процентам, а у последнего – всего лишь 5 процентам. Это означает, что при мощности солнечного потока в 500 Вт солнечная панель площадью один квадратный метр будет вырабатывать соответственно 50 и 25 Вт электроэнергии.
В противовес вышеупомянутым типам фотоэлементов выступают солнечные батареи на основе кремниевых полупроводников. Коэффициент фотоэлектрического преобразования на уровне 20%, а при благоприятных условиях – и 25% для них привычное дело. Как результат, мощность метровой солнечной панели может достигать 125 Вт.
Конкурировать по мощности с кремниевыми солнечными батареями способны разве что решения на основе арсенида галлия. Используя это соединение, инженеры научились создавать многослойные фотоэлементы с КФП свыше 30% (до 150 Вт электричества с квадратного метра).
Если же говорить о площади солнечных батарей, то существуют как миниатюрные «пластинки» мощностью до 10 Вт (для частой транспортировки), так и широченные «листы» на 200 Вт и более (сугубо для стационарного использования).
На работу солнечных батарей может негативно влиять ряд факторов. К примеру, с ростом температуры снижается КФП фотоэлементов. Это при том, что солнечные батареи как раз-то и устанавливают в жарких солнечных странах. Получается своеобразная палка о двух концах.
А если затемнить часть солнечной панели, то неактивные фотоэлементы не только прекращают вырабатывать электричество, но и становятся дополнительной, зловредной нагрузкой.
Лидерами глобального производства солнечных батарей являются компании Suntech, Yingli, Trina Solar, First Solar и Sharp Solar. Первые три представляют Китай, четвертая – США, а пятая, как нетрудно догадаться, является подразделением японской корпорации Sharp.
Американская компания First Solar не только производит солнечные батареи, но и принимает непосредственное участие в проектировании и строительстве солнечных электростанций.Мощнейшая в мире СЭС Агуа-Калиенте, которая находится в штате Аризона, США – дело рук инженеров First Solar.
Крупнейшую же украинскую СЭС «Перово» строила и снабжала солнечными панелями австрийская компания Activ Solar.
Китайская же компания Suntech прославилась тем, что готовила к летней Олимпиаде-2008 футбольный стадион под названием «Птичье гнездо» в Пекине. Вырабатываемая на протяжении дня с помощью солнечных батарей электроэнергия аккумулируется, а затем используется для освещения стадиона, полива травы на футбольном поле и работы телекоммуникационного оборудования.
Еще два десятилетия назад диковинкой казались микрокалькуляторы с фотоэлементами, что позволяло не менять в них «батарейку-таблетку» годами. Сейчас же мобильные телефоны со встроенной в заднюю крышку солнечной панелью никого не удивляют. А ведь это мелочь в сравнении с автомобилями и самолетами (пусть и беспилотными), которые научились передвигаться при помощи одной лишь солнечной энергии.
Будущее солнечных батарей видится точно таким же светлым, как само солнце. Хочется верить, что именно солнечные батареи позволят наконец-то вылечить смартфоны и планшеты от «розеткозависимости».