User Manual

Solar Charge Controller 3KW

CONTENTS

1 ABOUT THIS MANUAL	1
1.1 Purpose	1
1.2 Scope	1
1.3 SAFETY INSTRUCTIONS	1
2 INTRODUCTION	2
2.1 Features	2
2.2 Product Overview	3
3. INSTALLATION	4
3.1 Unpacking and Inspection	4
3.2 Preparation	4
3.3 Mounting the Unit	4
3.4 Power Connection	5
3.5 Grounding and Ground Fault Interruption	7
3.6 Remote Temperature Sensor	7
3.7 Battery Voltage Sense	8
3.8 Communication Connections	9
4. OPERATION	11
4.1 Power-Up	11
4.2 Operation and Display Panel	11
4.2 LCD Display Icons	12
4.3 Reference Code	13
5. CHARGING LOGIC	14
5.1 3-stage Charging	14
5.2 Equalize Stage	16
5.3 Setting Parameter and Default Value	19
6. TROUBLE SHOOTING	
7. SPECIFICATIONS	21

1 ABOUT THIS MANUAL

1.1 Purpose

This manual describes the assembly, installation, operation and troubleshooting of this unit. Please read this manual carefully before installations and operations. Keep this manual for future reference.

1.2 Scope

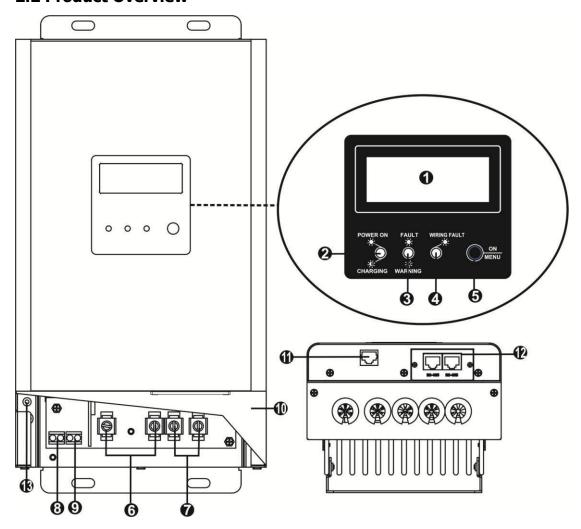
This manual provides safety and installation guidelines as well as information on tools and wiring.

1.3 SAFETY INSTRUCTIONS

WARNING: This chapter contains important safety and operating instructions. Read and keep this manual for future reference.

- 1. Before using the unit, read all instructions and cautionary markings on the unit, the batteries and all appropriate sections of this manual.
- 2. Do not disassemble the unit. Take it to a qualified service center when service or repair is required. Incorrect re-assembly may result in a risk of electric shock or fire.
- 3. To reduce risk of electric shock, disconnect all wirings before attempting any maintenance or cleaning. Turning off the unit will not reduce this risk.
- 4. **CAUTION** Only qualified personnel can install this device with battery.
- 5. **NEVER** charge a frozen battery.
- 6. For optimum operation of this charger, please follow required spec to select appropriate cable size. It's very important to correctly operate this charger.
- 7. Be very cautious when working with metal tools on or around batteries. A potential risk exists to drop a tool to spark or short circuit batteries or other electrical parts and could cause an explosion.
- 8. Please strictly follow installation procedure when you want to disconnect PV or battery terminals. Please refer to INSTALLATION section of this manual for the details.
- 9. GROUNDING INSTRUCTIONS -This charger should be connected to a permanent grounded wiring system. Be sure to comply with local requirements and regulation to install this charger.
- 10. NEVER cause short circuited on battery output.
- 11. **Warning!!** Only qualified service persons are able to service this device. If errors still persist after following troubleshooting table, please send this charger back to local dealer or service center for maintenance.

2 INTRODUCTION


Thank you for selecting this solar charge controller. This solar charge controller is an advanced solar charger with maximum power point tracking. Applying intelligent MPPT algorithm, it allows solar charge controller to extract maximum power from solar arrays by finding the maximum power point of the array.

The MPPT battery charging process has been optimized for long battery life and improved system performance. Self-diagnostics and electronic error protections prevent damage when installation errors or system faults occur. This charger also features multifunctional LCD with communication ports for remote battery temperature and voltage measurement.

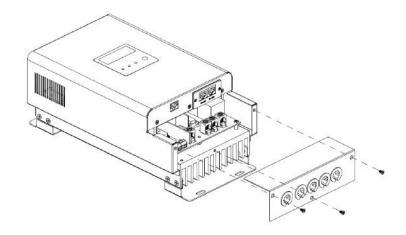
2.1 Features

- •Intelligent Maximum Power Point Tracking technology increases efficiency 25%~30%
- •Compatible for PV systems in 12V, 24V or 48V
- •Three-stage charging optimizes battery performance
- •Maximum charging current up to 60A
- Maximum efficiency up to 98%
- •Battery temperature sensor (BTS) automatically provides temperature compensation
- Automatic battery voltage detection
- •Support wide range of lead-acid batteries including wet, AGM and gel batteries
- •Integrated intelligent slot compatible with SNMP/MODBUS communication

2.2 Product Overview

- 1. LCD display
- 2. Power On/Charging indicator
- 3. Fault and warning indicator
- 4. Wiring fault indicator
- 5. Operation button
- 6. PV connectors
- 7. Battery connectors
- 8. Remote temperature sensor terminal
- 9. Battery voltage sense terminal
- 10. Wiring box cover
- 11. Communication port
- 12. Intelligent slot
- 13. Grounding terminal

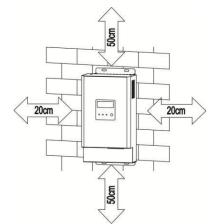
3. INSTALLATION


3.1 Unpacking and Inspection

Before installation, please inspect the unit. Be sure that nothing inside the package is damaged. You should have received the following items inside of package:

- Solar charge controller x 1
- User manual x 1
- Communication cable x 1
- Battery Voltage Sense x 1
- Software CD x 1

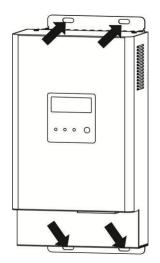
3.2 Preparation


Before connecting all wirings, please take off wiring box cover by removing screws as shown below.

3.3 Mounting the Unit

Consider the following points before selecting where to install:

- This solar charge controller is designed in IP31 for indoor applications only.
- Do not mount the unit on flammable construction materials.
- Mount on a solid surface
- Install this charger at eye level in order to allow the LCD display to be read at all times.
- For proper air circulation to dissipate heat, allow a clearance of approx. 20 cm to the side and approx. 50 cm above and below the unit.
- The ambient temperature should be between 0°C and 55°C to ensure optimal operation.
- The recommended installation position is to be adhered to the wall vertically.



Install the unit to the wall by screwing four screws. Refer to right chart.

3.4 Power Connection

Wire size

The four large power terminals are sized for 14 - 2 AWG $(2.5 - 35 \text{ mm}^2)$ wire. The terminals are rated for copper and aluminum conductors. Use UL-listed Class B 300 Volt stranded wire only. Good

system design generally requires large conductor wires for solar module and battery connections that limit voltage drop losses to 2% or less.

Minimum Wire Size

The table below provides the recommended minimum wire size allowed for the charger. Wire types rated for 75°C and 90°C are listed.

Recommended wire size:

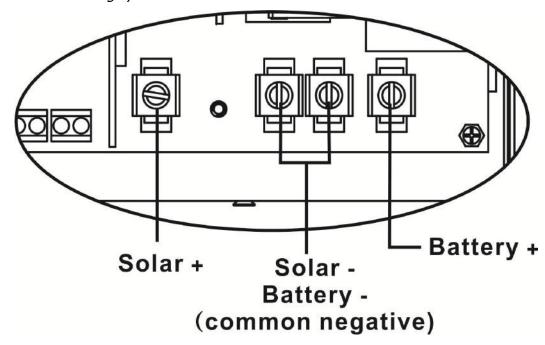
Typical Amperage	Wire Type	75°C Wire	90°C Wire	
604	Copper	4 AWG (25 mm ²)	6 AWG (16 mm ²)	
60A	Aluminum	2 AWG (35 mm ²)	4 AWG (25 mm ²)	

Overcurrent Protection and Disconnects

CAUTION: Circuit breakers or fuses must be installed in both battery and solar circuits.

The battery circuit breaker or fuse must be rated to 125% of the maximum current or more. The recommended breaker/fuse rating for use with the charger is listed in the below table.

Recommended breaker rating:


Minimum battery circuit breaker/fuse rating	
1.25 x 60 Amps = 75.0 Amps	

A disconnect is required for the battery and solar circuits to provide a means for removing power from the charger. Double pole switches or breakers are convenient for disconnecting both solar and battery conductors simultaneously.

Connect the Power Wires

WARNING: Shock Hazard

The solar modules can produce open-circuit voltages in excess of 100 Vdc when in sunlight. Verify if solar input breaker or disconnect has been opened (disconnected) before connecting system wires.

Connect terminals by following below steps (Refer to diagram above):

- 1. Make sure that the system input and output disconnect switches are both turned off before connecting power wires to the charger. There are no disconnecting switches inside the charger.
- 2. Make 4 power wires first. Remove insulation sleeve 10.5mm and the conductor should be plated Tin. Refer to the chart below.

3. Pull all wires into the wiring box. The Remote Temperature Sensor and Battery Sense wires can be inside the conduit with the power conductors. It is easier to pull RTS and Sense wires before the power cables.

WARNING: Risk of Damage

Be sure that the battery connection is made with correct polarity. Turn on the battery breaker/disconnect and measure the voltage on the open battery wires BEFORE connecting to the controller. Disconnect the battery breaker/disconnect before wiring

to the controller.

- 4. Connect positive terminal (+) of battery to the battery positive terminal (+) on the controller.
- 5. Connect negative terminal (-) of battery to one of the Common Negative terminals (-) on the controller.

WARNING: Risk of Damage

Be sure that solar connection is made with correct polarity. Turn on the solar breaker/disconnect and measure the voltage on the open wires BEFORE connecting to the controller. Disconnect solar breaker/disconnect before wiring to the controller.

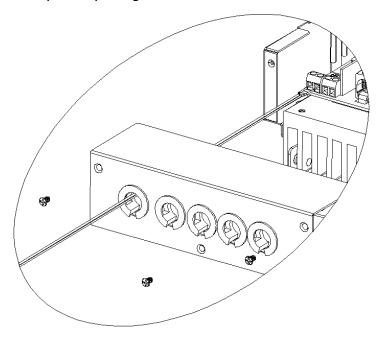
- 6. Connect positive wire (+) of solar module to the solar positive terminal (+) on the controller.
- 7. Connect negative wire (-) of solar module to one of the Common Negative terminals (-) on the controller.
- 8. Screw four (4) power terminals tightly with 50 in-lbs torque. (5.65 Nm)

3.5 Grounding and Ground Fault Interruption

Use a copper wire to connect the grounding terminal in the wiring box to earth ground. The grounding terminal is identified by the ground symbol shown below that is stamped into the wiring box just below the terminal:

The minimum size of the copper grounding wire is 8 AWG (10 mm2).

WARNING: Risk of Fire


DO NOT bond system electrical negative to earth ground at the controller.

3.6 Remote Temperature Sensor

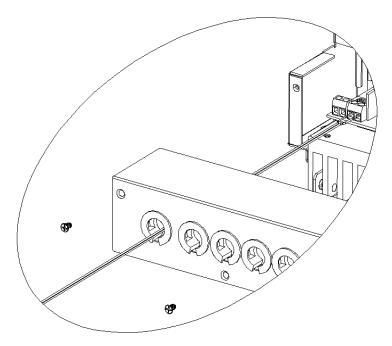
The included Remote Temperature Sensor (RTS) is recommended for effective temperature compensated charging. Connect the RTS to the 2-pole terminal (see figure as below). The RTS is supplied with 33 ft (10 m) of 22 AWG (0.34 mm2) cable. There is no polarity, so either wire (+ or -) can be connected to either screw terminal.

The RTS cable may be pulled through conduit along with the power wires. Tighten the connector screws with 5 in-lb (0.56 Nm) torque.

NOTE: The RTS is optional package. Please check local dealer for the details.

CAUTION: The controller will not activate temperature compensate charging function if the RTS is not used.

CAUTION: Equipment Damage


Never place the temperature sensor inside a battery cell. Both the RTS and the battery will be damaged.

NOTE: The RTS cable may be shortened if the full length is not needed.

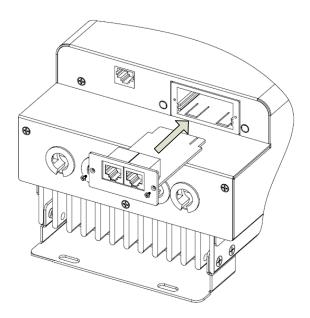
3.7 Battery Voltage Sense

The voltage at the battery connection on the controller may differ slightly from the voltage directly at the battery bank terminals due to connection and cable resistance. The Battery Voltage Sense connection enables the controller to measure the battery terminal voltage precisely with small gauge wires that carry very little current, and thus have no voltage drop. Both battery voltage sense wires are connected to the 2-pole terminal inside of wiring box (see figure as below).

Be careful to connect the battery positive (+) terminal to the voltage sense positive (+) terminal and battery negative (-) terminal to the voltage sense negative terminal (-). No damage will occur if the polarity is reversed, but the controller cannot read a reversed sense voltage.

A battery voltage sense connection is not essential required to operate your controller, but it is recommended for best performance. The battery voltage sense will ensure that the voltage display in LCD is very accurate.

The voltage sense wires should be cut to length as required to connect the battery to the voltage sense terminal. The wire size can range from 16 to 24 AWG (1.0 to 0.25 mm²). A twisted pair cable is recommended but not required. Use UL rated 300 Volt conductors. The voltage sense wires may be pulled through conduit with the power conductors. Tighten the connector screws with 5 in-lb (0.56 Nm) torque.


The maximum length allowed for each battery voltage sense wire is 98 ft (30 m).

3.8 Communication Connections

The default communication of the controller is RS232 port. You can use supplied cable to connect RS-232 port of the controller to PC. It can be used for monitoring or upgrade the firmware in short distance.

Intelligent slot allows the controller to use different communication methods except RS232. Slot can support SNMP, USB, MODBUS cards and so on.

You can follow the below figure to install the card if you had purchased for it.

Insert bundled software CD into a computer and follow on-screen instruction to install the monitoring software. For the detailed software operation, please check user manual of software inside of CD.

4. OPERATION

4.1 Power-Up

WARNING: Risk of Damage

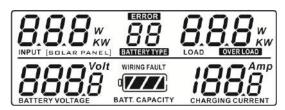
Connecting the solar module to the battery connector will permanently damage the controller.

- Confirm that the solar and battery polarities are correctly connected to the controller.
- A battery must be connected to the controller before operating it. The controller will not operate only with solar input. Solar input can trigger the controller to start up when the battery is connected without pressing the button.
- Turn on battery disconnect switch first. And press operation button for a while.
 Then, it will indicate a successful start-up in LCD display.
- Turn on solar disconnect switch. If the solar module is in full sunlight, the controller will begin charging.

4.2 Operation and Display Panel

The operation and display panel, shown in below chart, is on the front panel of the controller. It includes three indicators, one operation button and a LCD display, indicating the operating status and input/output power information.

LED Indicator


LED Indicator			Messages
		Solid On	The controller is on.
			The controller is charging.
POWER ON/	Croon	Flashing	Bulk charge stage: flashing every 0.5 second
CHARGING	Green		Absorption stage: flashing every second
		Equalize stage: flashing every 3 seconds	
		Float stage: flashing every 5 seconds	

FALLET/ MADNITUG	Dod	Solid On	Fault occurs.
FAULT/ WARNING	Reu	Flashing	Warning situation occurs.
WIRING FAULT	Red	Solid On	Battery polarities are not connected correctly.

Operation Button

Function	Action Description
Power on	Press the button until LCD backlight is on.
Equalization enable/disable	If equalization function is enabled, press the button for 3 seconds until LCD shows " o activate battery equalization immediately. If battery equalization is activated, press the button for 3 seconds until the " disappeared to cancel it.
Backlight on	Press shortly

4.2 LCD Display Icons

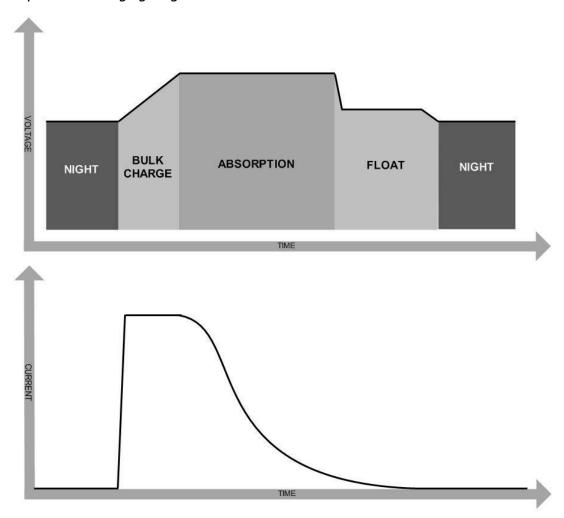
Icon	Function description					
Input Source Information						
INPUT [SOLAR PANEL]	Indicates the PV input voltage.					
Configuration Progr	am and Fault Information					
E9	Indicates battery equalization is activated.					
88	Indicates fault codes.					
88	Indicates warning codes.					
Output Information						
BATTERY VOLTAGE	Indicate battery voltage.					
8.88 W KW	Indicate charging power.					

IBBB Amp	Indicate charging current.
	Indicates battery level by 0-24%, 25-49%, 50-74% and 75-100% in battery mode and charging status in line
BATT. CAPACITY	mode

mode.

Battery Charging Status.

	=	
Status	Battery voltage	LCD Display
	<2V/cell	4 bars will flash in turns.
Constant	2 ~ 2.083V/cell	The right bar will be on and the
Current	2 19 2.005 V/CCII	other three bars will flash in turns.
mode /		The two right bars will be on and
Constant	2.083 ~ 2.167V/cell	the other two bars will flash in
Voltage		turns.
mode	> 2.167 V/cell	The three right bars will be on and
IIIode	2.107 V/Cell	the left bar will flash.
Floating	Batteries are fully	4 have will be an
mode	charged.	4 bars will be on.

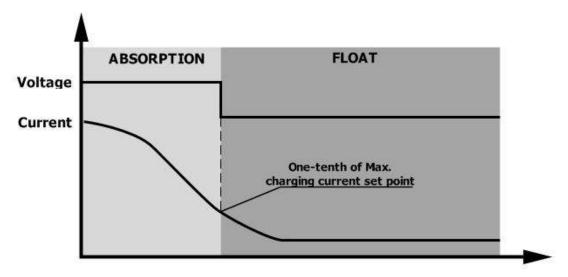

4.3 Reference Code

Туре	Code	Event			
	01	Over charge current			
	02	Over temperature			
	03	Battery voltage is too low			
Fault	04	Battery voltage is high			
	05	PV is high loss			
	06	Battery temperature is too low			
	07	Battery temperature is too high			
	20	PV is low loss			
Warning	21	Output derating caused from high PV voltage			
vvarring	22	Output derating caused from high temperature			
	23	Low alarm for battery temperature			

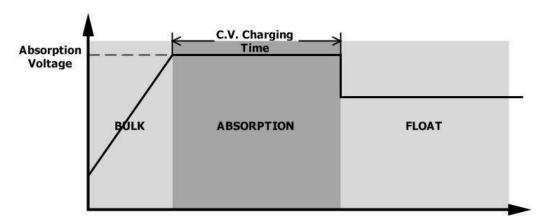
5. CHARGING LOGIC

5.1 3-stage Charging

In general, this solar charge controller is designed with 3-stage battery charging algorithm for fast, efficient, and safe battery charging. The following picture shows the sequence of charging stages.


1) Bulk charge stage

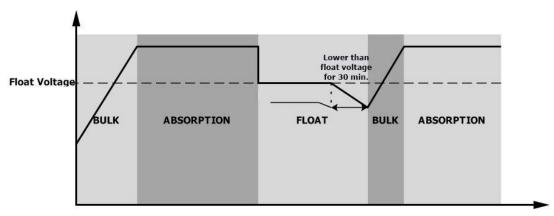
In bulk charge stage, charge current begins to flow, typically at the maximum rate of the charge source. The controller will supply solar power to charge battery as much as possible.


2) Absorption stage

When battery charging voltage is reached to Absorption voltage point, the charging stage changes from bulk charge to Absorption. Constant-voltage regulation is used to maintain battery voltage at the Absorption stage.

If the charging current drops to one-tenth of the maximum charging current setting point, the charging status will change to Float stage.

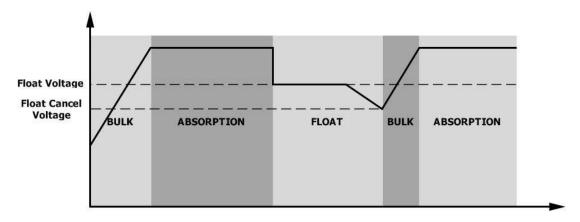
If the elapsed time of absorption stage is over setting value for C-V charging time, it will also transfer to Float stage.


3) Float Stage

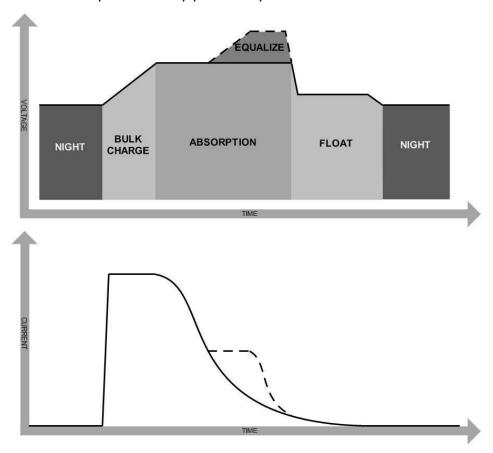
After the battery is fully charged in the Absorption stage, the controller will reduces the battery voltage to the setting point of Float voltage.

Once in Float stage, constant-voltage regulation is used to maintain battery voltage at setting point of float voltage.

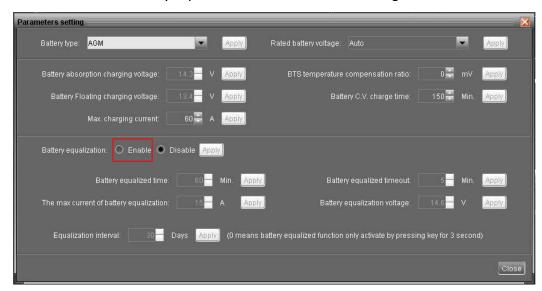
• Float timeout


If the battery voltage remains lower than the Float voltage for 30 minutes, the controller will return to Bulk charging stage.

• Float cancel voltage


Once the battery voltage drops to setting point of Float cancel voltage, the controller also returns to Bulk charging stage.

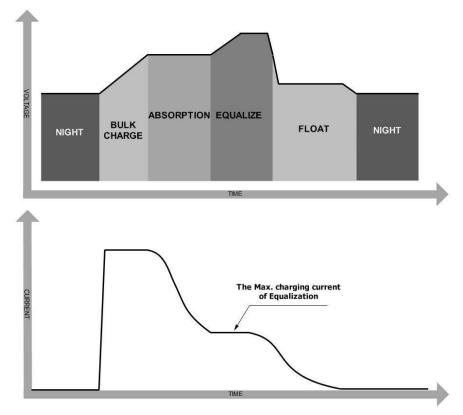
Float cancel voltage = Floating charging voltage - (1V x battery numbers in series)


5.2 Equalize Stage

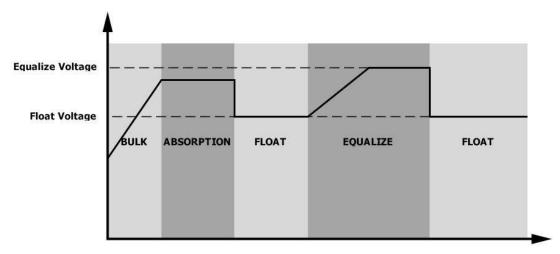
Equalization function is added into solar charge controller. It reverses the buildup of negative chemical effects like stratification, a condition where acid concentration is greater at the bottom of the battery than at the top. Equalization also helps to remove sulfate crystals that might have built up on the plates. If left unchecked, this condition, called sulfation, will reduce the overall capacity of the battery. Therefore, it's recommended to equalize battery periodically.

How to Apply Equalization Function

You must enable battery equalization function in monitoring software first.

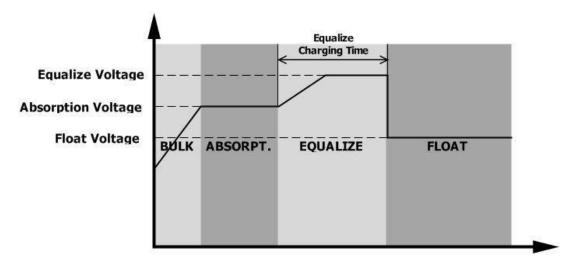


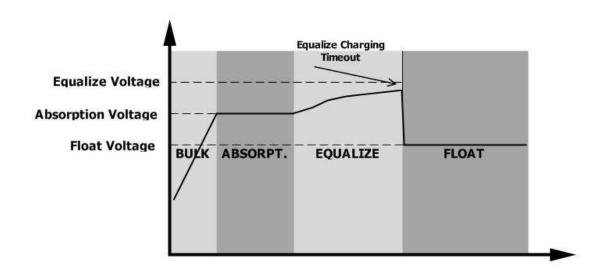
Then, you may apply this function in device by either one of following methods:


- 1. Setting equalization interval.
- 2. Or, press the button for 3 seconds until LCD shows " \mathcal{E} \mathcal{F} ".

When to Equalize

In Absorption stage, if the charging current drops lower than the maximum charging current of battery equalization, the controller will start to enter Equalize stage.


If solar charge controller is working in float stage, but at this time, the setting equalization interval (battery equalization cycle) is arrived, it will transfer to equalize stage.


Equalize charging time and timeout

In Equalize stage, based on maximum charging current of battery equalization, the controller will supply solar power to charge battery as much as possible until battery voltage raises to battery equalization voltage. Then, constant-voltage regulation is applied to maintain battery voltage at the battery equalization voltage.

The battery will remain in the Equalize stage until setting battery equalized time is arrived.

However, in Equalize stage, when battery equalized time is expired and battery voltage doesn't rise to battery equalization voltage point, the solar charge controller will extend the battery equalized time until battery voltage achieves battery equalization voltage. If battery voltage is still lower than battery equalization voltage when battery equalized timeout setting is over, the solar charge control will stop equalization and transfer to float stage.

5.3 Setting Parameter and Default Value

Recommended and default parameter settings are listed below.

Parameter	Battery type	Absorp. Stage	Float Stage	Equalize Stage	Equlize Activation	Absorp. Time	Equalize Time	Equalize Timeout	Equalize Interval
Unit	-	Volt	Volt	Volt	En/Disable	Minutes	Minutes	Minutes	Days
Default	AGM	14.10	13.50	14.60	Disable	150	60	120	30
Option	Flooded	14.60	13.50	14.60	Disable	150	60	120	30
Option	Customized	-	-	-	Disable	150	60	120	30

6. TROUBLE SHOOTING

	Situation			
Fault Code	Fault Event	Solution		
01	Over charge current	 Restart the charger. If the problem remains, please contact your installer. 		
02	Over temperature	 Keep the charger in the cool environment. If the problem remains, please contact your installer. 		
03	Battery voltage under	 Check the battery wire connection. If the wire connection is ok, please contact your installer. 		
04	Battery voltage high	 Reconnect the battery to the charger. If the problem remains, please contact your installer. 		
05	PV high loss	 Please check the voltage of the solar panel, it should be less than 140V. If the voltage is ok, please contact your installer. 		
06	Battery temperature too low	 Check your remote temperature sensor and your battery ambient temperature. If the problem remains, please contact your installer. 		
07	Battery temperature too high	 Check your remote temperature sensor and your battery ambient temperature. If the problem remains, please contact your installer. 		
No displa	ay in LCD screen.	 Check battery wire connection. Push the button, if the problem remains, please contact your installer. 		

7. SPECIFICATIONS

Table 1 Electrical Specifications

MODEL	MPPT 3KW	
Nominal System Voltage	12, 24, or 48 VDC (Auto detection)	
Maximum Battery Current	60 Amps	
Maximum Solar Input Voltage	145V	
PV Array MPPT Voltage Range	60~115VDC	
Maximum Input Power	12 Volt800 Watts 24 Volt1600 Watts 48 Volt3200 Watts	
PV Array voltage & Battery current	70 - 60	
Heatsink temperature & Battery current	70 - 60 60 70 75 80 85 90 95 Heatsink Temperature (degrees C)	
Transient Surge Protection	4500 Watts / port	

Protections	Solar high voltage disconnect	
	Solar high voltage reconnect	
	Battery high voltage disconnect	
	Battery high voltage reconnect	
	High temperature disconnect	
	High temperature reconnect	

Table 2 Battery Charging

MODEL	МРРТ ЗК	
Charging Algorithm	3-Step	
Charging stages	Bulk, Absorption, Float	
Temperature	-5 mV / °C / cell (25 °C ref.)	
compensation		
coefficient		
Temperature	0 °C to +50 °C	
compensation range		
Temperature	Absorption, Float	
compensated set points		
Charging Set points	Absorption Stage	Float Stage
Flooded Battery	14.6V / 29.2V / 58.4V	13.5V / 27V / 54V
AGM/Gel Battery (Default)	14.1V / 28.2V / 56.4V	13.5V / 27V / 54V
Over-charging voltage	15V / 30V / 60V	
Over-charging	14.5V / 29V / 58V	
comeback voltage		
Battery defect voltage	8.5V / 17V / 34V	
Battery defect	9V / 18V / 36V	
comeback voltage		

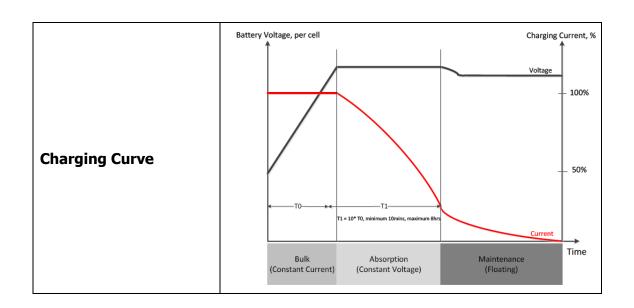


Table 3 Mechanical and Environment

Charger MODEL	МРРТ ЗК	
Product size (W x H x D, mm)	315 x 165 x 128	
Product weight (Kg)	4.5	
Ambient Temperature Range	0°C to 55°C	
Storage Temperature	-40°C to 75°C	
Humidity	0%-90% RH(No condensing)	
Enclosure	IP31 (indoor & vented)	

